
The Centroid Algorithm

The centroid algorithm is implemented in C, parallelized with threads, and wrapped in a

cython wrapper to be called from C.

To identify the fiber spot images, a thresholding algorithm is used. The unfiltered image is
searched to find a pixel above the threshold. The region of contiguous pixels above the
threshold neighbouring the first pixels is flagged using a standard “flood-fill” algorithm (not
considering diagonal pixels), and intensity-weighted first and second moments are calculated
on the fly, as well as the peak pixel value. Candidate spots were filtered by the number of
pixels included, to filter out noise and hot pixels. In addition, spots too close to the edge of the
image are filtered out.

The first moments are then used as initial input for the calculation of an iterative windowed
centroid via the following equations (derived from those used in the SeXtractor photometry
package). The position is

where t the iteration number, I the intensity at pixel i, rmax is the radius over which the
centroid is calculated, and the window function w is

where r is the distance from the current estimate of the centre (x,y) and s is a constant based
on the typical spot size. s was determined empirically from the data, and tested for robustness.

The algorithm requires two external parameters to be set; the threshold (which is given in
terms of RMS and calculated from the data), and the kernel size in the x and y directions, used
for the calculation of the constant s. The same kernel size is used for all images, to avoid biases
in the results.

The algorithm will not return duplicate spots. In unusual lighting circumstances (e.g., the
dome lights are turned on and there are bright patches on the image), the algorithm will fail by
returning one very large spot in the bright area.

Changes from the previous version

The previous version of the code did not check for contiguity of the pixels in a spot, and

used a box size to determine the region in which to search. For compact PSFs this worked well;

however for the more extended PSFs currently seen in MCS data, this could result in a spot
being larger than the box, which produced two candidate spots that could produce similar but
not identical results from the initial guesses, particularly for oddly shaped PSFs. Increasing the
box size also increased the probability of edge cases involving hot pixels, particularly with
lower thresholds.

In addition to the changes in the spot detection algorithm, the previous version used a
dynamically calculated kernel size, which could lead to small (< 0.02 pixel) variations in
calculated centroid. This was changed to a constant kernel size for all images. Note that this
differs from the the windowed algorithms used in SeXtractor, which operate on an image-by-
image basis.

Tests

The code was checked for memory leaks. Memory checking, etc. was done via a C routine

to call the centroiding code directly (without the python interface); this code is included in the
windowedCentroid directory.

The code was tested on the real system in simulator mode for a variety of data with different
exposure times (0.8, 4.8 and 8 s) to check repeatability, detection efficiency, and to screen for
duplicate points at the C level. In particular, pairs of consecutive images with the same
exposure time were used to check for differences inconsistent with seeing effects, as this was
how we detected issues in the first place. No issues were found.

The code was also tested with sequences of 4.8 s plots with different MCS foci, and varying
the input kernel size, to check the robustness of the choice of kernel size.

The updated code has a processing time of 0.3-0.4 seconds for the centroiding, well within
specifications, and comparable to the pre-update code.

A Makefile is included in the repository for compiling the C code for testing without
running via the cython interface.

Notes on updates to centroid code

Search image to find a point above the
threshold.

x

- Search in a box, marking all points
above the threshold as part of the
spot.

- Does not check for contiguity.

- Calculate a running first and second
moment

- Moments are input to the windowed
centroid routine

Problem:
- If the spot is larger than the box, two
initial spots will be detected.

- Centroids may converge to almost
the same position, but they may be
several pixels different, depending on
the shape of the PSF

Make the Box larger?
- A very large box can run into
problems with hot pixels which
give wrong centroids, based on a
very bad choice of initial position.

- This is particularly a problem
when setting the threshold fairly
low, when you may pick up noise.

- If the box is too large, you may
pick up more than one spot, for
collided cobras.

Spot Detection
Previous method

x

x

x

Very bad first
guess

Two initial first
guesses

Solution:
- Use routine that finds contiguous spots
above the threshold

- Not limited by spot size

- Standard “flood-fill” algorithm

Potential failure
- Too high threshold and
double peaked PSFs can
find two spots

- Too low a threshold /
high background will
detect a giant spot (eg,
dome lights are on)

- Detection now depends on threshold
only (no box size)

- Filter by minimum number of pixels to
filter out noise / hot pixels before sending
to windowed threshold

- Will not return duplicate spots

Windowed Centroid
 - pass kernel size as an external input, based on typical spot size/shape.

 - can’t calculate on the fly for parallel mode (as sub-sections of the image
have slightly different characteristics)

 - no actor level change needed for this implementation

 - two input parameters: size of box over which centroid calculated, kernel
sizes

- box size set to the point where increasing it does not increase accuracy

- kernel size based on typical spot size/shape

Filtering Duplicated Spots
 - updates to the detection method means that duplicate spots are no
longer returned for a single image

 - for parallel mode, duplicate spots in the overlap region are now
identical

Identical values

Will be filtered
out before being

passed back

Centroiding and
Filtering

- checked for memory leaks

- tested on real system with file input and test database

- actor runs smoothly

 - tested on sets of consecutive images taken with a variety of parameters

 (Plots on following pages)

 - different exposure times

 - focus sweep data (different PSF sizes)

 - pre-dropping images have some issues with the current transformation code

Processing time: ~ 0.3 seconds per frame

Tests

Plots on next pages
- all spots detected with all PSF sizes

- Each plot shows histogram of dx, dy between frames, and a quiver

plot of the same

- sequence of plots with different exposure times (0.8, 4.8, 8)
dominated by seeing effects

- sequence of plots with different MCS foci, using input kernel size for
the centroiding, all 4.8s exposures; kernel size doesn’t have a strong
effect on the results (frame-to-frame variations are larger).

Difference between consecutive images by exposure time

Right: dX and dY. Left: title numbers are focus / exposure time / median of the differences across the field

Difference between consecutive images by focus

Right: dX and dY. Left: title numbers are focus / exposure time / median of the differences across the field

