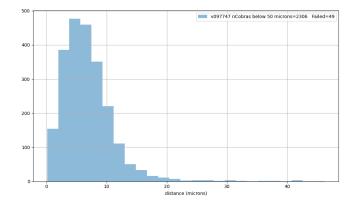


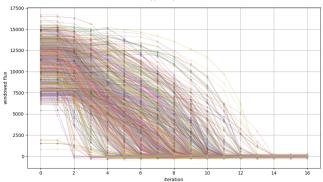
<ロト <回ト < 注ト < 注ト = 注

------Dot-roach analysis-----convergenceId=v097747 dotRoachId0=v097749 darkRoachId0=v097774 mod4Id0=v097798


Arnaud Le Fur

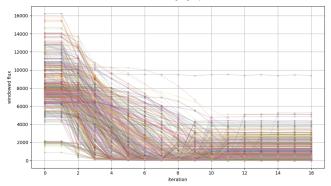
auto 2024-02-15

Table of Contents


- 1. Near-dot convergence results
- 2. Cobras stopped in phase 1
- 3. Cobras going to phase 2
- 4. Cobras that did not behave as expected
- 5. How many iteration required to enter the dot
- 6. Cobras in phase 2
- 7. Flux in dark-roach vs distance in near-dot convergence
- 8. Final Attenuation for working cobras
- 9. Final flux for all cobras
- 10. DarkRoach PfsConfig fiberStatus wrt targetType
- 11. Mod4 PfsDesign
- 12. Mod4 PfsConfig fiberStatus wrt targetType
- 13. Conclusion
- 14. Cobrald 516

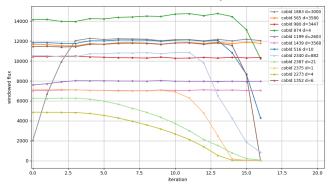
Near-dot convergence results

Convergence results look nominal.


Cobras stopped in phase 1

v097749 698 / 1181 cobras stopped in phase1 attenuationGoal=0.003

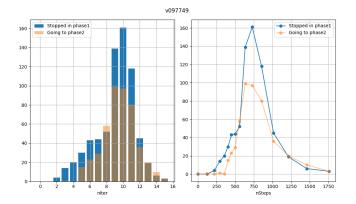
That's the cobras that reached a sufficient attenuation going through the dot moving phi in one direction.


Cobras going to phase 2

v097749 698 / 1181 going to phase2

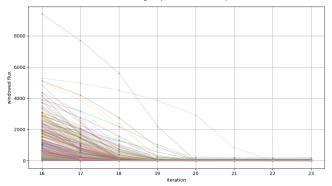
That's the cobras that have overshoot during phase 1, phi will go in the opposite direction in the next phase.

Cobras that did not behave as expected

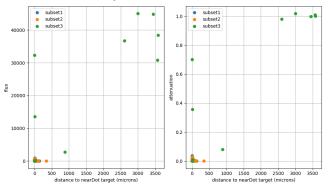


v097749 12 / 1181 cobras misbehaving

- ▶ 1 cobras started in the shadow of the dot.
- 4 Some cobras did not cross the dot.
- O cobras cross the dot partly.
- ▶ 2 cobras were going in but late.


イロト イヨト イヨト イヨト 三日

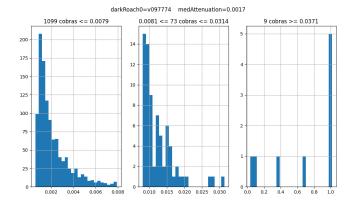
How many iteration required to enter the dot


Right figure show you in terms of phi steps.

Cobras in phase 2

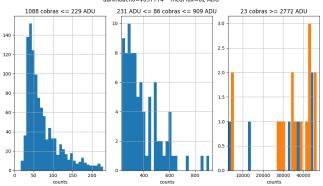
v097749 467 / 471 got improved attenuation wrt phase 1

Flux in dark-roach vs distance in near-dot convergence



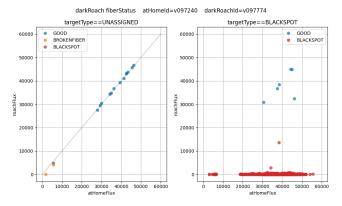
convergenceVisit=v097747 darkRoach0=v097774

- We can observe that the tolerance to distance is quite high, problems start to appear when distance >0.7mm.
- We can also see there are a few converged cobras that end up having a high flux.


(日) (部) (注) (注) (言)

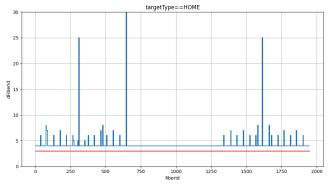
Final Attenuation for working cobras

 Intrisic problem due to the extraction (bright neighbours, scattered light) can bias the results.


Final flux for all cobras

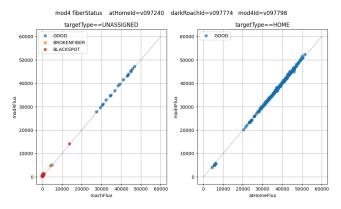
darkRoach0=v097774 medFlux=62 ADU

- Same conclusion as previous slide.
- intrisic problem due to the extraction (bright neighbours, scattered light) can increase the apparent flux.


DarkRoach PfsConfig fiberStatus wrt targetType

- ▶ Left plot let you check that cobras with targetType==UNASSIGNED have the ≈ same flux as in HOME.
- ▶ Right plot let you check that cobras with targetType==BLACKSPOT have ≈ 0, except few failures reported earlier.
- ► FiberStatus looks mostly correct, one fiber with high sps flux is labelled BLACKSPOT.

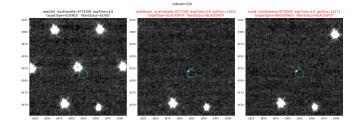
12/16


Mod4 PfsDesign

mod4 pfsConfig0=97785,0x7fdb0c2424f074ec

- This show you dFiberld(fiberld[i+1] fiberld[i]) for the fibers that are revealed.
- ▶ In the context of MOD4, it should be at least 4.
- ► The PfsDesign is correct.

Mod4 PfsConfig fiberStatus wrt targetType



- Left plot let you check that cobras with targetType==UNASSIGNED have the ≈ same flux as in DarkRoach.
- ▶ Right plot let you check that cobras with targetType==HOME have the ≈ same flux measured in home.
- FiberStatus looks mostly correct, one fiber with high sps flux is labelled BLACKSPOT.

Conclusion

- Convergence was nominal.
- ▶ DotRoach worked well, out of 1174/1181 cobras were hidden.
- DarkRoach pfsConfig.targetType/fiberStatus is correct.
- Mod4 PfsDesign is correct.
- Mod4 PfsConfig.fiberStatus is correct.

Cobrald 516

4 ロ ト () + 1 ()