

PFS

SM1 Hexapod positioning and repeatibility

ALF Draft version 20201006

Hexapod vs CCD coordinate system

SuMIRe

How was the data taken ?

DitheredArcs sequence :

* 0.5 pixels shift in both direction. Translated in hexapod reference using Neven's last measurement : 0.5 pixels in x_axis \rightarrow 17.24 microns (Z_Axis) 0.5 pixels in y_axis \rightarrow 16.6 microns (Y_Axis)

- * Including negative shift
- * 3 duplicates

* R1 CCD

* Argon lamp (45 seconds)

It leads to 9 positions * 3 = 27 frames

New control code (INSTRM-1051) :

For each move, hexapod goes 500 microns below in Z axis and then goes up to requested position. (500 microns has been chosen purely arbitrary.)

PRINCETON UNIVERSITY

How data is processed?

Analysis is performed independently on 9 different peaks They are ~ homogeneously distributed on the detector (argon has almost no lines below 800th rows)

* Calculate centroids using center of mass and gaussian fit.

- * Sigma clipped-mean of the duplicate position :
 Criteria : Total ROI flux normalized by the total frame flux
 → Get rid of cosmic rays and lamp failures.
- * Calculate centroids difference from position 0,0
- $\rightarrow\,$ 9 couple of pixels offsets from center

I've chosen centroids from gaussian fit because they are more stable.

Their absolute position might be erroneous, but I'm interested in pixel offsets, so I think that's fine.

 IIC moves both axes together :
 → leads to two hexapod motion using hysteris compensation.

Sequence has been repeated 3 times.

In the legend, I have separated Three kinds of motion with the following information :

Z-Axis : mean absolute pixel offset X +- stddev, mean absolute pixel offset Y +- stddev,

Y-Axis : mean absolute pixel offset X +- stddev, ^{0.6} mean absolute pixel offset Y +- stddev, ^{0.4}

BothAxes :

mean absolute pixel offset X +- stddev, mean absolute pixel offset Y +- stddev,

IIC moves one axis after another : \rightarrow leads to four hexapod motion using hysteris compensation.

Sequence has also been repeated 3 times.

Results does not appeared to be tremendously different which makes sense because hysteresis was already compensated in the first dataset.

UNIVERSITY

In both dataset, we can clearly see a positioning error more present on the edges than in the center. I cannot tell whether it comes from a very small misalignment or due to some distorsions. In anycase, I think the hexapod is behaving correctly and the repeatibility is coherent with NewPort spreadsheet.

Measure position variation (stddev) for each peak vs sequence Repeat (dataset 1).

	X(pixels)	Y(pixels)	X(microns)	Y(microns)
Z-Axis	0.0052	0.0045	0.1805	0.1493
Y-Axis	0.0048	0.0047	0.1649	0.1577
Both Axes	0.0065	0.0043	0.2258	0.1419

Mechanical Specifications

	X	Y	Z	Θx	Θγ	Θz
Travel range ⁽¹⁾	±29 mm	±26 mm	28 mm (-1 to +27)	±12°	±10°	±20°
MIM, Minimum incremental motion	0.5 µm	0.5 µm	0.25 µm	0.25 mdeg	0.25 mdeg	0.5 mdeg
Uni-directional repeatability, typical	0.5 µm	0.5 µm	0.25 µm	0.25 mdeg	0.25 mdeg	0.5 mdeg
Bi-directional repeatability ⁽²⁾ , typical	4 μm	4 µm	2 µm	2 mdeg	2 mdeg	4 mdeg
	(1 µm)	(1 µm)	(0.5 µm)	(0.5 mdeg)	(0.5 mdeg)	(0.4 mdeg)
Max. speed	2 mm/s	2 mm/s	1 mm/s	0.8 °/s	0.8 °/s	1.6 °/s
Stiffness	5 N/µm	5 N/µm	40 N/µm	-	-	-
Centered load capacity ¹³⁾			200	N		

¹⁾ Travel ranges are interdependent. The listed values are max. travels per axis when all other axis are in their centered position (Height = 208 mm for Z of the HXP100).

2) With standard compensation (with hysteresis compensation).

³⁾ For allowable cantilevered loads, call a Newport Applications Engineer.

3.1

CAUTION

To reach specifications stated, stages must be fixed on a plane surface with a flatness of 5 $\mu m.$

