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CHAPTER

ONE

INTRODUCTION

The Prime Focus Spectrograph consists of approximately 2400 science fibers, distributed over a 1.3 deg2 field, feed-
ing four spectrographs, each comprised of blue, red and infrared arms which together cover wavelengths of 0.38 -
1.26 microns. It is the responsibility of the 2D Data Reduction Pipeline (DRP) to process the raw data to produce
wavelength-calibrated, flux-calibrated coadded spectra suitable for science investigations. This document outlines a
design for the 2D DRP, including the data flow, the support classes, the functional modules, and the datasets that will
be produced.

The 2D DRP will be built following the same philosophy as the LSST stack and the Hyper Suprime-Cam pipeline.
The pipeline will be written in Python, for ease of development, maintenance and reading, while classes and functions
requiring the performance of a compiled language will be implemented in C++ and wrapped using pybind11. As far
as is practical given the smaller size of our development team, we will follow the coding styles and policies in the
LSST Developer Guide.
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CHAPTER

TWO

PIPELINE DATA FLOW

Here we outline a general overview of the pipeline, tracing the flow of data through the pipeline from raw data to
the delivered product. We will introduce the major components, but a detailed explanation of the subcomponents is
deferred to the section on Functional Modules.

2.1 Data Repository

The LSST stack includes an I/O abstraction layer known as the “data butler”, or just “the butler”. The butler maps
keyword-value pairs into file paths within the “data repository” using pre-defined templates. Input data are read from,
and output products are written to, a directory within the data repository. Within a data repository, outputs are typically
written within a “rerun” directory specified by a symbolic name (usually with the --rerun command-line argument).
This serves to group products from a processing run together.

The butler allows data to be specified using keyword-value pairs (usually with the --id key1=value1
key2=value2 command-line argument1, which allows for flexibility and avoids the need for the user to keep track
of filenames. For example, a set of bias exposures from a particular date can be specified using the individual expo-
sure numbers, if known (--id exp=123..132), or by the type of exposure and the date (--id object=BIAS
dateObs=2018-11-05).

2.2 Ingesting raw data

In order to access raw data, it must first be ingested into the data repository. The LSST stack provides a script to
perform this, which we will use: ingestImages.py2.

Example usage:

ingestImages.py /path/to/repo /path/to/raw/data/*.fits

2.3 Calib Construction

“Calibs” are versioned calibration products wherein the behavior of the instrument is modeled (often using dedicated
observations) and recorded for use in removing the instrumental signature of science data. The flow of the calib
construction is shown in Figure 2.1.

1 On the command-line, values can be specified like this^that meaning both this and that; 123..234 meaning all values from 123 to
234; and 123..234:7 meaning all values from 123 to 234 counting by 7.

2 As of November 2018, this script ingests only raw images. We will need to modify it to also ingest the pfiConfig files.
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Figure 2.1: The calib construction components of the pipeline. Each component on the left constructs the products
on the right, which are used for subsequent components.
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The LSST stack includes a facility for constructing calibs and ingesting them into a calibration repository for later
retrieval3. We will use the LSST scripts for constructing biases and darks, as these are constructed in the same way
for spectroscopy as for imaging; and we will also use the LSST script, ingestCalibs.py, for ingesting the calibs
into the calibration repository.

Example construction of a bias calib:

constructBias.py /path/to/repo --calib /path/to/calibs --rerun calib/bias --id
→˓object=BIAS dateObs=2018-11-06 <operational arguments>
ingestCalibs.py /path/to/repo/ --calib /path/to/calibs /path/to/repo/rerun/calib/bias/
→˓.../*.fits --validity 30

Example construction of a dark calib:

constructDark.py /path/to/repo --calib /path/to/calibs --rerun calib/dark --id
→˓object=DARK dateObs=2018-11-06 <operational arguments>
ingestCalibs.py /path/to/repo --calib /path/to/calibs /path/to/repo/rerun/calib/dark/.
→˓../*.fits --validity 30

At this point, we need to use our own calib construction modules, as our spectroscopic flat fields are observed and
combined differently than for imaging. The inputs for our flat field construction script are quartz lamp observations
with the slit position dithered in the dimension of the slit (i.e., x offsets). A new script, constructFiberFlat.py
(see constructFiberFlat), will combine these:

constructFiberFlat.py /path/to/repo --calib /path/to/calibs --rerun calib/flat --id
→˓object=QUARTZ dateObs=2018-11-06 <operational arguments>
ingestCalibs.py /path/to/repo --calib /path/to/calibs /path/to/repo/rerun/calib/flat/.
→˓../*.fits --validity 1000

Next, we need to map the precise location and profile of each fiber’s trace on the detector (see constructFiberTrace).
It’s possible4 that this will have to be done independently for each science observation since the location and profile
can have subtle changes with changes in the cobra position5. Furthermore, when the slit is fully populated the fiber
profiles will overlap, and we will need to use two input exposures: one for the odd fibers and one for the even fibers.
Because the fiber traces are obtained by all fibers observing the same quartz lamp, this also provides an opportunity to
provide a relative flux calibration across all the fibers. Here is an example:

constructFiberTrace.py /path/to/repo --calib /path/to/calibs --rerun calib/fiberTrace
→˓--id exp=123^124 <operational arguments>
ingestCalibs.py /path/to/repo --calib /path/to/calibs /path/to/repo/rerun/calib/
→˓fiberTrace/.../*.fits --validity 1

We now need to map the wavelength solution over the detectors using arc exposures (see constructDetectorMap).
Similar to the case for the fiber traces, this may need to be done independently for each science observation, but for
now we will assume not. Here is an example:

constructDetectorMap.py /path/to/repo --calib /path/to/calibs --rerun calib/
→˓detectorMap --id object=ARC dateObs=2018-11-06 <operational arguments>
ingestCalibs.py /path/to/repo --calib /path/to/calibs /path/to/repo/rerun/calib/
→˓detectorMap/.../*.fits --validity 1

Finally, we need the PSF model parameters (see constructPsf ). The exact contents of these PSF model parameters is
yet to be determined, but it’s clear that they are an important input to the pipeline and they will change with changes
to the instrument, so it makes sense to treat them as a calib. Here’s a possible example:

3 The current calib system is crude, having grown organically, but it should serve our purposes. We expect it will mature over the next few years
as the LSST team devotes more attention to it.

4 Perhaps even likely.
5 In this case, we can associate a fiber trace with a particular pfsCconfigId.

2.3. Calib Construction 4
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constructPsf.py /path/to/repo --calib /path/to/calibs --rerun calib/psf --id
→˓object=DONUT dateObs=2018-11-06 <operational arguments>
ingestCalibs.py /path/to/repo --calib /path/to/calibs /path/to/repo/rerun/calib/psf/..
→˓./*.fits --validity 1

2.4 Science observations

The flow of science data through the pipeline is shown in Figure 2.2.

The first operation when processing science observations is the most involved: the extraction of sky-subtracted spectra.
reduceExposure.py (see reduceExposure) will operate on all arms of the same flavor (e.g., the blue arms from
each spectrograph) so that the maximum information is available for modeling the sky. It will first perform the
instrument signature removal (ISR), subtracting the bias and dark, and dividing by the flat. Then it will fit a PSF
model to the sky lines, model the collection of sky line fluxes over the fibers, and subtract the sky lines from the
images. Finally, the spectra will be extracted using the fiber trace and detector map. The product is a collection of
sky-subtracted spectra for each spectrograph arm (pfsArm). Each will have been wavelength-calibrated (through the
detectorMap, and perhaps tweaks using the sky lines) and a relative (across arms) flux calibration (through the fiber
trace). Here is an example command-line:

reduceExposure.py /path/to/repo --calib /path/to/calib --rerun science --id exp=123
→˓arm=r <operational parameters>

Next, we merge the arms within each spectrograph, so that subsequent operations can be done using all available
spectral information for each object. This resamples and combines the spectra of each object from the separate arms.
This also provides an opportunity to clean up any residuals from the 2D sky subtractions by fitting the sky residuals
over the fibers and subtracting from the extracted spectra. The result is a set of spectra covering the entire spectral
range, for the entire field-of-view. An example command-line is:

mergeArms.py /path/to/repo --calib /path/to/calib --rerun science --id exp=123
→˓<operational arguments>

We now turn our attention to flux calibration of the extracted, merged spectra. The first thing we need to do for this is
generate a set of reference spectra for the calibration (see calculateReferenceFlux). An example command-line is:

calculateReferenceFlux.py /path/to/repo --calib /path/to/calib --rerun science --id
→˓exp=123 <operational arguments>

Now we can use the reference spectra to measure the flux calibration and apply it to the science targets (see fluxCal-
ibrate). The result is wavelength-calibrated, flux-calibrated spectra from the exposure. An example command-line
is:

fluxCalibrate.py /path/to/repo --calib /path/to/calib --rerun science --id exp=123
→˓<operational arguments>

The final operation in the pipeline is to coadd spectra of the same object from multiple exposures (see coaddSpectra).
This resamples and combines the spectra of each object from the separate arms of separate exposures. The result is
wavelength-calibrated, flux-calibrated coadded spectra. An example command-line is:

coaddSpectra.py /path/to/repo --calib /path/to/calib --rerun science --id exp=123^234^
→˓345 <operational arguments>

2.4. Science observations 5
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Figure 2.2: The components of the pipeline for processing science observations.
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CHAPTER

THREE

SUPPORTING CLASSES

Besides the wide variety of primitives we can employ from LSST’s Astronomical FrameWork (afw), we need some
additional classes focussed on support for spectroscopy. We will not here attempt to reproduce the full API, but outline
the intended capabilities and uses.

3.1 DetectorMap

This class models the fiber positions and wavelengths over the detector. As of November 2018, this class models
the fiber positions and wavelengths independently, but the fiber positions and wavelengths are, in principle, a two-
dimensional function: a quartz exposure shows lines of constant slit position (i.e., the fibers), while an arc exposure
shows (broken) lines of constant wavelength (i.e., the emission lines).

The principal capabilities are:

• Identify the fiber at a point on the detector (findFiberId).

• Calculate the wavelength at a point on the detector (findWavelength).

• Calculate the point on the detector for a given fiber and wavelength (findPoint).

• Provides the wavelength solution for extracted spectra (getWavelength).

• Can serve as a foundation for identifying fibers on the image (getXCenter).

This class will be implemented in the drp_stella package in C++ (for maximum performance and so it can be
used in other C++ modules) and wrapped into python.

3.2 FiberTrace and FiberTraceSet

A FiberTrace models the fiber positions and profiles as a function of detector row. A FiberTraceSet is a
collection of FiberTraces.

As of November 2018, this class models the profile as a function of row as an image at native resolution which, because
the profiles are undersampled, means they cannot be shifted to a new center; we hope to remedy this shortcoming in
the future.

The principal capabilities of FiberTrace are:

• Provide an image of the trace (getTrace).

• Extract a spectrum from an image (extractSpectrum).

• Construct a model image given a spectrum (constructImage).

7
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These classes will be implemented in the drp_stella package in C++ (for maximum performance) and wrapped
into python.

3.3 Spectrum and SpectrumSet

A Spectrum is an measure of flux as a function of wavelength. A SpectrumSet is a collection of Spectrums.

Spectrum contains vectors for the flux, background, wavelength, mask and covariance. This is typically used to
carry extracted spectra from observations, but it could also be used for reference spectra in physical units.

A Spectrum is persisted as a PfsObject, while a SpectrumSet is persisted as a PfsSpectra.

These classes will be implemented in the drp_stella package in C++ (for maximum performance) and wrapped
into python.

3.4 LineSpreadFunction

A LineSpreadFunction is a model of the line profile of an extracted spectrum. It can be measured by extracting
the two-dimensional PSF, and is an important ingredient for interpreting the science spectra produced by the pipeline.

The principal capabilities are:

• Calculate the spectrum of an emission line at a given wavelength.

This class will be implemented in the drp_stella package in C++ (for maximum performance) and wrapped into
python.

3.5 PfsSpectra

A PfsSpectra1 is a collection of spectra from a common source, which may be the arm of a spectrograph, or the
entire instrument. It shall be the formal I/O representation of such in the PFS Datamodel.

The principal capabilities are:

• Read spectra from FITS (read).

• Write spectra to FITS (write).

• Plot spectra (plot).

• Carry data:

– Wavelength arrays (lam)

– Flux arrays (flux)

– Mask arrays (mask)

– Sky arrays (sky)

– Covariance arrays (covar)

1 This is called PfsArm as of November 2018, but that confuses the class and the use of the class. Renaming the class allows reuse of the class
type for other cases where we want to group spectra. The dataset pfsArm shall now be of type PfsSpectra.

3.3. Spectrum and SpectrumSet 8
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This class will be implemented in the datamodel package in python (for ease of use with no compilation or LSST
dependencies required). While it carries the same information as the more-capable SpectrumSet class, it never-
theless is distinct, as the latter needs to be implemented in C++ for performance reasons. However, it will be used to
persist data contained in SpectrumSet, and we will provide functions for converting between the two.

3.6 PfsObject

A PfsObject is a single spectrum of a particular object. It is the formal I/O representation of such in the PFS
Datamodel.

The principal capabilities are:

• Read spectrum from FITS (read).

• Write spectrum to FITS (write).

• Plot spectrum (plot).

• Carry data:

– Wavelength array (lam)

– Flux array (flux)

– Mask array (mask)

– Sky array (sky)

– Covariance array (covar)

This class will be implemented in the datamodel package in python (for ease of use with no compilation or LSST
dependencies required). While it carries the same information as the Spectrum class, it nevertheless is distinct, as
the latter needs to be implemented in C++ for performance reasons. However, it will be used to persist data contained
in Spectrum, and we will provide functions for converting between the two.

3.7 PfsConfig

A PfsConfig carries data about the configuration of the prime-focus instrument, essentially tying the fiber IDs to
their targets.

The principal capabilities are:

• Read data from FITS (read).

• Write data to FITS (write).

• Carry data for each fiber:

– Object name (str)

– RA (float; radians)

– Dec (float; radians)

– Fiber x, y position (float)

– Nominal fiber x, y position (float)

– Flag (int) indicating the fiber’s use (e.g., SCIENCE, SKY, FLUXSTD, BROKEN, BLOCKED).

– Bandpasses and corresponding magnitudes (dict mapping str to float).

3.6. PfsObject 9
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This class will be implemented in the datamodel package in python (for ease of use with no compilation or LSST
dependencies required).

3.7. PfsConfig 10



CHAPTER

FOUR

FUNCTIONAL MODULES

Here we describe the individual modules comprising the pipeline: their inputs, components, algorithms, and outputs.

4.1 Top-level modules

The following top-level modules will be implemented as lsst.pipe.base.CmdLineTasks (possibly with MPI
for scatter-gather operations). They may be run independently, or by a master pipeline driver script (which could be a
lsst.ctrl.pool.BatchPoolTask or its successor).

4.1.1 _constructBias

constructBias operates on a set of bias exposures of a single spectrograph arm. For each input image, we apply
the usual instrument signature removal (ISR) steps up to and not including bias subtraction. Then we average the
individual exposures, with a mild clipping to reject deviant pixels. The final product is the combined master bias.

• Input datasets:

– raw: exposures to combine.

• Output datasets:

– bias: master bias; primary product.

– postISRCCD: cached ISR-corrected exposures.

4.1.2 _constructDark

constructDark operates on a set of dark exposures of a single spectrograph arm. For each input image, we apply
the usual instrument signature removal (ISR) steps up to and not including dark subtraction, and mask cosmic-rays on
the basis of their morphology. Then we average the individual exposures, with clipping to reject deviant pixels. The
final product is the combined master dark.

• Input datasets:

– raw: exposures to combine.

• Output datasets:

– dark: master dark; primary product.

– postISRCCD: cached ISR-corrected exposures.

11
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4.1.3 constructFiberFlat

constructFiberFlat operates on a set of quartz exposures of a single spectrograph arm, where the slit position
has been dithered along the slit dimension. It can operate separately on individual spectrograph arms: there is no
need to coordinate the operations for different arms or spectrographs, because this is solely a calibration of individual
detectors and no flux calibration is taking place1.

For each input image, we apply the usual instrument signature removal (ISR) steps up to and not including flat-fielding,
and mask cosmic-rays on the basis of their morphology. Then we combine the individual images, normalizing the
pixels within the row of each fiber by the total flux in that fiber row:

𝐹 (𝑖, 𝑥, 𝑦) =
∑︁
𝑗

𝑓𝑗(𝑖, 𝑥, 𝑦)/
∑︁
𝑥

𝑓𝑗(𝑖, 𝑥, 𝑦)

where 𝐹 (𝑖, 𝑥, 𝑦) is the combined flat-field with the flux in fiber 𝑖 as a function of position, (𝑥, 𝑦); and 𝑓𝑗(𝑖, 𝑥, 𝑦) is the
𝑗-th input image.

The final product is the combined master flat image.

• Input datasets:

– raw: exposures to combine.

– bias, dark: master bias and dark for ISR.

– detectorMap: map of fiber positions, may be used for finding fibers.

• Output datasets:

– flat: master flat; primary product.

– postISRCCD: cached ISR-corrected exposures.

4.1.4 constructFiberTrace

constructFiberTrace operates on a set of quartz exposures of a single spectrograph arm, where the slit position
is held constant and different fibers are illuminated in each exposure. It can operate separately on individual spec-
trograph arms: there is no need to coordinate the operations for different arms or spectrographs, because the quartz
illumination of the screen (assumed constant) is sufficient to link them already.

For each input image, we apply the usual instrument signature removal (ISR) steps and mask cosmic-rays on the basis
of their morphology. Then we find and centroid traces on each image, measure the trace profiles and extract the spectra.
Next, the fiber traces are identified using the detectorMap, and the sets of fiber traces from the individual images are
merged. Finally, each trace profile is normalized so that the extracted spectrum would match some reference spectrum:

𝑡*(𝑖, 𝜆) = 𝑡(𝑖, 𝜆) *𝑅(𝜆)/𝑆(𝑖, 𝜆)

where 𝑡*(𝑖, 𝜆) is the normalized trace of the 𝑖-th fiber for wavelength 𝜆, 𝑡(𝑖, 𝜆) is the raw trace, 𝑅(𝜆) is the reference
spectrum, and 𝑆(𝑖, 𝜆) is the extracted spectrum of the 𝑖-th fiber.

The reference spectrum is arbitrary, and can be chosen for convenience or ease of flux calibration2. Some possibilities
are:

• A smoothed version of the median extracted spectrum.

• A flat spectrum of unit value.

1 A relative flux calibration occurs in constructFiberTrace. It would be difficult to do a flux calibration here, because the wings of the fibers
overlap, so that a single pixel can contain flux from two fibers; therefore merely scaling the pixel values in the flat cannot flux-calibrate a single
fiber.

2 The reference spectrum should be smooth over the wavelength scale corresponding to any wavelength calibration errors.

4.1. Top-level modules 12
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• A 4500 K black body.

The final product is the normalized fiber trace.

• Input datasets:

– raw: exposures to use.

– bias, dark, flat: master bias, dark and flat for ISR.

– detectorMap: map of fiber positions, used for finding fibers and rough wavelength calibration.

• Output datasets:

– fiberTrace: trace of fibers; primary product.

– postISRCCD: cached ISR-corrected exposures.

4.1.5 constructDetectorMap

constructDetectorMap operates on a set of arc exposures of a single spectrograph arm, where the slit position
is held constant while different arc lamps are exposed in turn. It can operate separately on individual spectrograph
arms, as each can be calibrated separately.

For each input image, we apply the usual instrument signature removal (ISR) steps and mask cosmic-rays on the basis
of their morphology before extracting spectra for each fiber. Arc lines are identified in each fiber’s spectrum, and the
lines are centroided. For each fiber, the list of arc lines and their centroids for each input image is collected, and the
wavelength solution is fit3; this solution is used to update the detectorMap.

This updated detectorMap is the final product.

• Input datasets:

– raw: exposures to use.

– bias, dark, flat: master bias, dark and flat for ISR.

– fiberTrace: for extracting spectra.

– bootstrapDetectorMap: a theoretical or average detectorMap for bootstrapping the specific detec-
torMap we’re constructing.

• Output datasets:

– detectorMap: map of fiber positions and wavelengths; primary product.

– postISRCCD: cached ISR-corrected exposures.

4.1.6 constructPsf

constructPsf operates on a set of raw out-of-focus (“donut”) arc exposures. It operates separately on individual
spectrograph arms, as the camera in each arm is independent.

For each input image, we apply the usual instrument signature removal (ISR) steps and mask cosmic-rays on the basis
of their morphology. Then, with some sort of dark magic that I don’t understand, the donuts are fit with the model
PSF.

The final product is the PSF model parameters.

• Input datasets:

– raw: exposures to use.

3 It’s best to fit a function to the residuals of the wavelength solution provided by the detectorMap.

4.1. Top-level modules 13
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– bias, dark, flat: master bias, dark and flat for ISR.

– detectorMap: map of fiber position and wavelength, for identifying fibers and arc lines.

• Output datasets:

– psfParams: PSF parameters; primary product.

– postISRCCD: cached ISR-corrected exposures.

4.1.7 reduceExposure

reduceExposure operates on a set of raw science exposures for all arms of the same kind over the entire instrument,
as it needs to fit models as a function of wavelength over the entire field of view in the two-dimensional sky subtraction.

For each input image, we apply the usual instrument signature removal (ISR) steps and mask cosmic-rays on the basis
of their morphology. Then, if it found to be necessary, we can tweak the wavelength solution in the detectorMap by
extracting the spectra and fitting the wavelengths of the sky lines.

Next we perform the two-dimensional sky subtraction (see subtractSky2d for details). Finally, for each arm the spectra
are extracted and written as the final product.

• Input datasets:

– raw: exposures to use.

– bias, dark, flat: master bias, dark and flat for ISR.

– psfParams: PSF parameters, for subtractSky2d.

– fiberTrace: fiber profiles for extraction.

– detectorMap: map of fiber position and wavelength, for wavelength calibration.

– pfiConfig: top-end configuration, for identifying sky fibers.

• Output datasets:

– pfsArm: sky-subtracted, wavelength-calibrated spectra from arm; primary product.

– postISRCCD: ISR-corrected exposure.

– psf: PSF model, from subtractSky2d.

– sky2d: 2d sky model, from subtractSky2d.

– lsf: line-spread function, from subtractSky2d.

4.1.8 mergeArms

mergeArms operates on all arms for the entire instrument, as it needs to fit models as a function of wavelength over
the entire field of view in the one-dimensional sky subtraction, and it merges the arms within each spectrograph.

For all arms of the same kind, we perform a one-dimensional sky subtraction (see subtractSky1d for details). Now
that we are done with corrections in the frame of the instrument, we can apply a barycentric wavelength correction.
Finally, the spectra from the arms of each spectrograph are merged. The final product is the merged, sky-subtracted,
wavelength-calibrated and barycentric-corrected spectra for the entire field of view.

• Input datasets:

– pfsArm: sky-subtracted, wavelength-calibrated spectra from arm.

– lsf: line-spread function.
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– pfiConfig: top-end configuration, for identifying sky fibers.

• Output datasets:

– pfsMerged: Merged spectra for all spectrographs+arms; primary product.

– sky1d: 1d sky model, from subtractSky1d.

• Algorithmic details:

– We might do the merge using the Kirkby-Kaiser algorithm.

4.1.9 calculateReferenceFlux

calculateReferenceFlux operates on spectra from the entire field-of-view (i.e., the output of mergeArms).

For each spectrum that will be used for flux calibration (typically F-stars), we determine the most suitable reference
spectrum from a grid of models. This reference spectrum should be scaled to the correct flux using broad-band
photometry from the pfiConfig. The final product is the flux-corrected reference spectra.

• Input datasets:

– pfsMerged: Merged spectra for all spectrographs+arms.

– pfiConfig: top-end configuration, for identifying calibration fibers.

– refModels: grid of reference models.

• Output datasets:

– pfsReference: reference spectra; primary product.

4.1.10 fluxCalibrate

fluxCalibrate operates on spectra from the entire field-of-view (i.e., the output of mergeArms).

For each spectrum that will be used for flux calibration (typically F-stars) we measure the flux calibration vector. We
model the ensemble of flux calibration vectors over the focal plane, and apply the flux calibration model to the science
spectra. Finally, the science spectra can be tweaked to match the broad-band photometry in the pfiConfig. The
final product is the wavelength-calibrated, flux-calibrated spectra for the entire field of view.

• Input datasets:

– pfsMerged: Merged spectra for all spectrographs+arms.

– pfiConfig: top-end configuration, for identifying calibration fibers.

– pfsReference: reference spectra.

• Output datasets:

– pfsObject: flux-calibrated object spectra; primary product.

– fluxCal: flux calibration parameters.

• Algorithmic details:

– When modeling the flux calibration over the field of view, we could consider weighting by the distance of
the fiber position from the nominal position.
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4.1.11 coaddSpectra

coaddSpectra operates on a set of spectra from the entire field-of-view.

First, we read the input pfiConfig files to determine the list of objects and their inputs, and then we coadd the
input spectra of each object. In order to construct a coadd without correlated noise, we need to go back to the original
extracted spectra (before merging arms). This requires re-applying the calibrations that were originally calculated
from the merged spectra, specifically, the one-dimensional sky subtraction and flux calibration.

• Input datasets:

– pfiConfig: top-end configuration, for identifying calibration fibers.

– pfsArm: sky-subtracted, wavelength-calibrated spectra from arm.

– sky1d: 1d sky model, from subtractSky1d.

– fluxCal: flux calibration parameters, from fluxCalibrate.

• Output datasets:

– pfsCoadd: coadded spectrum; primary product.

• Algorithmic details:

– We coadd the original (un-resampled) spectra using the Kirkby-Kaiser algorithm.

4.2 Lower-level modules

The following modules support the top-level modules: they do not need to be stand-alone executables. They will be
implemented as lsst.pipe.base.Tasks that return lsst.pipe.base.Structs with the necessary outputs.
Multiple versions of these modules may be developed with increasingly sophisticated algorithms as the pipeline grows
in functionality.

4.2.1 subtractSky2d

subtractSky2d subtracts sky lines from the two-dimensional images (i.e., before extracting the spectra). This is
important because the sky lines from neighboring fibers overlap, especially when the lines are bright.

This module operates on all arms of the same kind for the entire instrument in a single exposure (e.g., all red arms in
a single exposure). This is necessary because we will fit models as a function of wavelength over the entire field of
view.

This module requires the following inputs:

• exposureList (list of lsst.afw.image.Exposure): a list of exposures for the arms; these shall be
modified (the sky shall be subtracted).

• pfiConfig (pfs.datamodel.PfiConfig): configuration of the top-end, for identifying sky fibers.

• fiberTraceList (list of pfs.drp.stella.FiberTraceSet): a list of fiber traces for the arms
(same order as for exposureList).

• detectorMapList (list of pfs.drp.stella.DetectorMap): a list of detectorMaps for the arms
(same order as for exposureList).

• psfParamsList (list of pfs.drp.stella.PfsPsfParams): a list of PSF parameters for the arms
(same order as for exposureList).

• skyLineList (list of pfs.drp.stella.ReferenceLine): a list of sky lines.
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We will first remove the sky continuum so that we can measure the sky lines. In order to do so, we will extract the
spectra and fit a continuum to the sky fibers. This continuum can be modelled as a function of RA,Dec (fitFocalPlane),
and it is then subtracted from all fibers in two dimensions (using the fiber profiles in the fiberTraceList to
construct images with the sky continuum spectra).

Next, we measure the sky lines. The details of this step have not been worked out yet, but it likely involves fitting a
PSF (using the provided psfParamsList), fitting the PSF to the sky lines to measure their intensity, modelling the
intensity as a function of focal plane position (fitFocalPlane), and then generating model images (using the PSF and
sky line model) which can be subtracted from the input images.

The outputs of this module shall be:

• psfList (list of pfs.drp.stella.PfsPsf): the fit PSFs (same order as for exposureList).

• continuumModel (class TBD): the model for the sky continuum.

• skyLineModel (class TBD): the model for the sky lines.

4.2.2 subtractSky1d

subtractSky1d subtracts the sky from the one-dimensional spectra. This can be used to clean up the residuals
after two-dimensional sky subtraction (subtractSky2d), or as the primary sky-subtraction technique.

This module requires the following inputs:

• spectraList (list of pfs.drp.stella.SpectrumSet): a list of spectra for the arms; these shall be
modified (the sky shall be subtracted).

• pfiConfig (pfs.datamodel.PfiConfig): configuration of the top-end, for identifying sky fibers.

• lsfList (list of pfs.drp.stella.Lsf): a list of line-spread functions for the arms (same order as for
exposureList).

• skyLineList (list of pfs.drp.stella.ReferenceLine): a list of sky lines.

This module consists of four parts:

1. Use the sky fibers to generate a model for the sky. Multiple models can be imagined for this:

• A multiple of the average sky spectrum.

• A linear combination of principal components.

• A continuum plus discrete sky lines.

2. Fit the model to the sky fibers.

3. Fit the model parameters as a function of position on the focal plane (fitFocalPlane).

4. Subtract the model from all the fibers.

The outputs of this module shall be:

• skyModel (class TBD): the model for the sky.

4.2.3 fitFocalPlane

fitFocalPlane fits a set of vectors for fibers over the focal plane. These vectors might be a spectrum for each
fiber, or the parameters of a model, but each needs to be modelled as a function of position on the focal plane.

This module requires the following inputs:

• vectorList (list of numpy.ndarray): Vectors to model over the focal plane.
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• fiberIdList (list of int): List of corresponding fiber IDs (same order as vectorList).

• pfiConfig (pfs.datamodel.PfiConfig): configuration of the top-end, for mapping fiber ID to focal-
plane position.

• evalFiberIdList (list of int): List of fiber IDs for which the model should be evaluated; may be None
to indicate that the model should be evaluated for all fibers in the pfiConfig.

In addition to these inputs, a set of configuration parameters will govern how the fit is done:

• raOrder (int): Polynomial order in RA.

• decOrder (int): Polynomial order in Dec.

• rejIter (int): Number of rejection iterations.

• rejThreshold (float): Rejection threshold (standard deviations).

• weighting (str): Specifies how weighting is to be done:

– uniform: no weighting.

– offset: weight by distance between actual fiber position and nominal fiber position.

This should be a simple matter of fitting a two-dimensional polynomial, with optional rejection and weighting. Each
vector index is fit independently.

The outputs of this module shall be:

• modelList (list of some polynomial class): Polynomial fit for each vector index (same order as
vectorList).

• chi2List (list of float): The 𝜒2 value for each fit (same order as vectorList).

• numList (list of int): The number of values used for each fit (same order as vectorList).

• evalList (list of numpy.ndarray): The evaluated vectors for each of the fibers in the
evalFiberIdList (same order as evalFiberIdList, or if evalFiberIdList is None then the same
order as in the pfiConfig).

4.2.4 extractSpectra

extractSpectra extracts spectra from an image, given the fiber traces and detectorMap.

The module requires the following inputs:

• image (lsst.afw.image.MaskedImage): Image from which to extract spectra.

• traces (pfs.drp.stella.FiberTraceSet): Fiber traces, specifying the position and profile as a func-
tion of row.

• detectorMap (pfs.drp.stella.DetectorMap): Map of fiber position and wavelength on the detec-
tor; used for the wavelength solution.

The extraction could be done with one of a number of algorithms, the choice of which will be set by a configuration
parameter:

1. Boxcar extraction: sum the data in pixels around the peak. This is the simplest possible algorithm, but doesn’t
maximize signal-to-noise; useful for testing.

2. “Optimal extraction”: sum the data weighted by the fiber profile. This is a better algorithm for optimising the
signal-to-noise, but it doesn’t deal with neighboring fibers which may contaminate the fiber being extracted.
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3. Simultaneous fit: solve the tri-diagonal matrix from least-squares fitting a linear combination of fiber profiles.
This can be done in linear time, so it should be fast enough. This approach deals with neighbors, and is likely
the ultimate algorithm we will use for science.

4. Iterative extractions: one can imagine an iterative approach whereby the optimal extraction is performed itera-
tively. We don’t expect to use this algorithm.

These will be coded in C++ (as a method of the FiberTrace class) for speed.

The outputs of this module shall be:

• spectra (pfs.drp.stella.SpectrumSet): The extracted spectra.
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CHAPTER

FIVE

DATASETS

Here we describe the various products of the pipeline. Some are intended for internal use, while others are intended
for science users.

5.1 Raw products

The following products are provided by the observing system, and ingested into the data repository as the first step in
pipeline operations:

• raw (lsst.afw.image.ImageU): the raw image from the data acquisition system.

• pfiConfig (pfs.datamodel.PfsConfig): top-end configuration, for mapping fibers to their targets.

5.2 Calib products

• bias (lsst.afw.image.Exposure): master bias frame.

• dark (lsst.afw.image.Exposure): master dark frame.

• flat (lsst.afw.image.Exposure): mask flat frame, constructed from dithered quartz exposures.

• fiberTrace (pfs.drp.stella.FiberTraceSet): position and profile of each fiber as a function of
row.

• detectorMap (pfs.drp.stella.DetectorMap): mapping between fiber and wavelength to position
on the detector.

• bootstrapDetectorMap (pfs.drp.stella.DetectorMap): a theoretical or average detectorMap
for bootstrapping the specific detectorMap we’re constructing.

• psfParams (type TBD): PSF parameters, determined from donut exposures.

5.3 Reference products

The following products provide bulk data for the operation of pipeline algorithms. They may be provided by the butler,
or some other mechanism (e.g., files or directories in obs_pfs, a git-lfs repo, etc.).

• refModels (type TBD): a grid of reference models, used for calculateReferenceFlux.

• arcLines (type TBD): a list of arc lines: their wavelengths, identifications, strengths and flags indicating
whether they should be used or not.
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• skyLines (type TBD): a list of sky lines: their wavelengths, identifications, strengths and flags indicating
whether they are resolved or not.

5.4 Temporary products

The following products are produced for convenience only, and can in general be deleted once their usefulness has
been realised:

• postISRCCD (lsst.afw.image.Exposure): cached ISR-corrected exposure, for calib construction.

5.5 Operational products

The following products are produced by the pipeline in the course of operations, and may be useful for debugging or
close inspection of data quality:

• psf (type TBD): PSF model, from subtractSky2d.

• sky2d (type TBD): sky model, from subtractSky2d.

• lsf (pfs.drp.stella.LineSpreadFunction): line-spread function, derived from the PSF model,
from reduceExposure.

• sky1d (type TBD): sky model, from subtractSky1d.

• fluxCal (type TBD): flux calibration, from fluxCalibrate.

• pfsReference (pfs.datamodel.PfsSpectra): reference spectra, from calculateReferenceFlux.

• pfsMerged (pfs.datamodel.PfsSpectra): arm-merged spectra for the entire instrument, from
mergeArms.

5.6 Science products

These are the main science products of the pipeline.

• pfsArm (pfs.datamodel.PfsSpectra): sky-subtracted, wavelength-calibrated spectra from a single
arm of a single spectrograph, from reduceExposure. Since these spectra have not been resampled after extrac-
tion, this may be useful for identifying cosmic-ray hits masquerading as emission lines in the pfsObject or
pfsCoadd.

• pfsObject (pfs.datamodel.PfsObject): flux-calibrated, barycentric wavelength-calibrated object
spectrum from a single exposure, from fluxCalibrate. This is useful for investigating variations from exposure
to exposure, or identifying cosmic-ray hits masquerading as emission lines in the pfsCoadd.

• pfsCoadd (pfs.datamodel.PfsObject): coadded spectrum from multiple exposures, from coaddSpec-
tra. This is the main science product that most science users will want.
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CHAPTER

SIX

CONCERNS AND/OR FUTURE DEVELOPMENT DIRECTIONS

Here we outline some concerns with the design as presented that might be remedied in a future version of the pipeline.

6.1 DetectorMap and FiberTrace

There is a degree of overlap between DetectorMap and FiberTrace: both track the center of the fibers as a
function of row. This duplication is unnecessary, but is present in the current design for historical reasons. The
functionality of FiberTrace could be subsumed into DetectorMap in a future design, at which point the
constructFiberTrace.py and constructDetectorMap.py scripts will also be merged.

6.2 Bootstrapping the detectorMap

We need to know the detectorMap before we construct it with constructDetectorMap.py, because it
is an input to both constructFiberTrace.py and constructDetectorMap.py. This can be done
by using an additional calib product specifically for this purpose (we use bootstrapDetectorMap in
constructDetectorMap.py).

6.3 Association of DetectorMap and FiberTrace with science ex-
posures

If there is a one-to-one relationship between science exposures and calibration exposures1, then it may not be con-
venient to treat the detectorMap and fiber trace used for science reductions as calibs. In that case, the quartz and
arc exposures could be inputs to reduceExposure2, which would first construct the fiber trace and detectorMap before
operating on the science exposure.

6.4 NIR detectors

The NIR detectors produce multiple images as they read “up the ramp”. While they should fit into the general flow of
the pipeline design as outlined, the details are not yet clear, e.g., how they will be read by the butler, and what changes
to ISR are necessary to support them. The specification of details is deferred until we get actual NIR data.

1 This might occur if we “replay” the fiber positions used for the science exposures at the end of the night in order to take corresponding quartz
(for the fiber trace) and arcs (for the detectorMap).

2 The appropriate quartz and arc could be identified through having the same pfsConfigId as the raw exposure.
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